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Instructional Objectives 
 

At the end of this lesson, the students should be able to understand 

 

• Types of loading on machine elements and allowable stresses. 

• Concept of yielding and fracture. 

• Different theories of failure. 

• Construction of yield surfaces for failure theories. 

• Optimize a design comparing different failure theories 

 

3.1.1 Introduction 
Machine parts fail when the stresses induced by external forces exceed their 

strength. The external loads cause internal stresses in the elements and the 

component size depends on the stresses developed. Stresses developed in a 

link subjected to uniaxial loading is shown in figure-3.1.1.1. Loading may be due 

to:  

a) The energy transmitted by a machine element. 

b) Dead weight. 

c) Inertial forces.  

d) Thermal loading. 

e) Frictional forces. 
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3.1.1.1A- Stresses developed in a link subjected to uniaxial loading 

In another way, load may be classified as: 

a) Static load- Load does not change in magnitude and direction and 

normally increases gradually to a steady value. 

b) Dynamic load-  Load may change in magnitude for example, traffic of 

varying weight passing a bridge.Load may change in direction, for 

example, load on piston rod of a double acting cylinder. 

Vibration and shock are types of dynamic loading. Figure-3.1.1.2 shows load vs 

time characteristics for both static and dynamic loading of machine elements.  
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3.1.1.2F - Types of loading on machine elements. 
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SPACE FOR A UNIVERSAL TENSILE TEST CLIPPING

3.1.2  Allowable Stresses: Factor of Safety  
 
Determination of stresses in structural or machine components would be 

meaningless unless they are compared with the material strength. If the induced 

stress is less than or equal to the limiting material strength then the designed 

component may be considered to be safe and an indication about the size of the 

component is obtained. The strength of various materials for engineering 

applications is determined in the laboratory with standard specimens. For 

example, for tension and compression tests a round rod of specified dimension is 

used in a tensile test machine where load is applied until fracture occurs. This 

test is usually carried out in a Universal testing machine of the type shown in 

clipping- 3.1.2.1. The load at which the specimen finally ruptures is known as 

Ultimate load and the ratio of load to original cross-sectional area is the Ultimate 

stress. 

  

 

 

3.1.2.1V 

 

 

Similar tests are carried out for bending, shear and torsion and the results for 

different materials are available in handbooks. For design purpose an allowable 

stress is used in place of the critical stress to take into account the uncertainties  

including the following: 

 

1) Uncertainty in loading. 

2) Inhomogeneity of materials.  

3) Various material behaviors. e.g. corrosion, plastic flow, creep. 

4) Residual stresses due to different manufacturing process. 
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UltimateStress F.S.
AllowableStress

=

5) Fluctuating load (fatigue loading): Experimental results and plot- ultimate  

      strength depends on number of cycles. 

6) Safety and reliability. 

For ductile materials, the yield strength and for brittle materials the ultimate 

strength are taken as the critical stress.   

An allowable stress is set considerably lower than the ultimate strength. The ratio 

of ultimate to allowable load or stress is known as factor of safety i.e. 

 

 

 

The ratio must always be greater than unity. It is easier to refer to the ratio of 

stresses since this applies to material properties. 

 

3.1.3 Theories of failure 
 
When a machine element is subjected to a system of complex stress system, it is 

important to predict the mode of failure so that the design methodology may be 

based on a particular failure criterion. Theories of failure are essentially a set of 

failure criteria developed for the ease of design. 

 In machine design an element is said to have failed if it ceases to perform its 

function. There are basically two types of mechanical failure: 

(a) Yielding- This is due to excessive inelastic deformation rendering the 

machine  

         part unsuitable to perform its function. This mostly occurs in ductile 

materials. 

(b) Fracture- in this case the component tears apart in two or more parts. This 

mostly occurs in brittle materials. 

There is no sharp line of demarcation between ductile and brittle materials. 

However a rough guideline is that if percentage elongation is less than 5% 

then the material may be treated as brittle and if it is more than 15% then the 
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material is ductile. However, there are many instances when a ductile 

material may fail by fracture. This may occur if a material is subjected to 

(a) Cyclic loading.  

(b) Long term static loading at elevated temperature. 

(c) Impact loading. 

(d) Work hardening. 

(e) Severe quenching. 

Yielding and fracture can be visualized in a typical tensile test as shown in the 

clipping-  Typical engineering stress-strain relationship from simple tension 

tests for same engineering materials are shown in figure- 3.1.3.1. 

 

 

 

 

 

 

 

 

 

 

    

3.1.3.1F- (a) Stress-strain diagram for a ductile material e.g. low carbon 

steel. 
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 3.1.3.1F- (b) Stress-strain diagram for low ductility. 

 

 

 

 

 

 

 

 

 

3.1.3.1F- (c) Stress-strain diagram for a brittle material. 

 

 

 

 

 

 

 

 

 

3.1.3.1F- (d) Stress-strain diagram for an elastic – perfectly plastic 

material. 
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SPACE FOR  FATIGUE TEST CLIPPING

      

For a typical ductile material as shown in figure-3.1.3.1 (a) there is a definite yield 

point where material begins to yield more rapidly without any change in stress 

level. Corresponding stress is σy . Close to yield point is the proportional limit 

which marks the transition from elastic to plastic range. Beyond elastic limit for an 

elastic- perfectly plastic material yielding would continue without further rise in 

stress i.e. stress-strain diagram would be parallel to parallel to strain axis beyond 

the yield point. However, for most ductile materials, such as, low-carbon steel 

beyond yield point the stress in the specimens rises upto a peak value known as 

ultimate tensile stress σo . Beyond this point the specimen starts to neck-down 

i.e. the reduction in cross-sectional area. However, the stress-strain curve falls till 

a point where fracture occurs. The drop in stress is apparent since original cross-

sectional area is used to calculate the stress. If instantaneous cross-sectional 

area is used the curve would rise as shown in figure- 3.1.3.1 (a) . For a material 

with low ductility there is no definite yield point and usually off-set yield points are 

defined for convenience. This is shown in figure-3.1.3.1. For a brittle material 

stress increases linearly with strain till fracture occurs. These are demonstrated 

in the clipping- 3.1.3.2 .    

 

 
                          
3.1.3.2V 
 

3.1.4 Yield criteria 
 

There are numerous yield criteria, going as far back as Coulomb (1773). Many of 

these were originally developed for brittle materials but were later applied to 

ductile materials. Some of the more common ones will be discussed briefly here. 
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3.1.4.1 Maximum principal stress theory ( Rankine theory) 
 

According to this, if one of the principal stresses σ1 (maximum principal 

stress), σ2 (minimum principal stress) or σ3 exceeds the yield stress, yielding 

would occur. In a two dimensional loading situation for a ductile material 

where tensile and compressive yield stress are nearly of same magnitude 

    σ1 = ± σy 

    σ2 = ±σy 

Using this, a yield surface may be drawn, as shown in figure- 3.1.4.1.1. 

Yielding occurs when the state of stress is at the boundary of the rectangle. 

Consider, for example, the state of stress of a thin walled pressure vessel. 

Here σ1= 2σ2, σ1 being the circumferential or hoop stress and σ2 the axial 

stress. As the pressure in the vessel increases the stress follows the dotted 

line. At a point (say) a, the stresses are still within the elastic limit but at b, σ1 

reaches σy although σ2 is still less than σy. Yielding will then begin at point b. 

This theory of yielding has very poor agreement with experiment. However, 

the theory has been used successfully for brittle materials. 

 

 

 

 

 

 

 

 
3.1.4.1.1F-    Yield surface corresponding to maximum principal stress  

theory  
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3.1.4.2 Maximum principal strain theory (St. Venant’s theory) 
According to this theory, yielding will occur when the maximum principal strain        

just exceeds the strain at the tensile yield point in either simple tension or 

compression. If ε1 and ε2 are maximum and minimum principal strains 

corresponding to σ1 and σ2, in the limiting case 

 

 

 

 

 

 

     The boundary of a yield surface in this case is thus given as shown in figure-
3.1.4.2.1  

 

 

 

 

 

 

 

 

 

3.1.4.2.1- Yield surface corresponding to maximum principal strain theory 
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3.1.4.3 Maximum shear stress theory ( Tresca theory)  
According to this theory, yielding would occur when the maximum shear 

stress just exceeds the shear stress at the tensile yield point. At the tensile 

yield point σ2= σ3 = 0 and thus maximum shear stress is σy/2. This gives us 

six conditions for a three-dimensional stress situation: 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         

 

3.1.4.3.1F- Yield surface corresponding to  maximum shear stress 

theory 

 

 In a biaxial stress situation ( figure-3.1.4.3.1) case, σ3 = 0 and this gives 
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( )1 1 2 2 3 3 y y
1 1σ ε σ ε σ ε σ ε
2 2

+ + =

σ2 σ1 σ

τ

( )1 1 2 2 3 3 y y
1 1σ ε σ ε σ ε σ ε
2 2

+ + =

 

 

This criterion agrees well with experiment. 

In the case of pure shear, σ1 = - σ2 = k (say), σ3 = 0        

                 and this gives  σ1- σ2 = 2k= σy 

This indicates that yield stress in pure shear is half the tensile yield stress and 

this is also seen in the Mohr’s circle ( figure- 3.1.4.3.2) for pure shear. 

 

 

                                                                                          

 

 

 

 

 

3.1.4.3.2F- Mohr’s circle for pure shear 

 

3.1.4.4 Maximum strain energy theory ( Beltrami’s theory) 
              

According to this theory failure would occur when the total strain energy 

absorbed at a point per unit volume exceeds the strain energy absorbed per 

unit volume at the tensile yield point. This 

may be given by 

  

 

Substituting, ε1, ε2 , ε3 and εy in terms of stresses we have 

( )2 2 2 2
1 2 3 1 2 2 3 3 1 yσ σ σ 2υ σ σ σ σ σ σ σ+ + − + + =  

This may be written as  

y y y

2 2

1 2 1 2
22 1

⎛ ⎞⎛ ⎞ ⎛ ⎞σ σ σ σ
⎜ ⎟+ − ν =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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σ2

σ1

-σy

-σy

σy

σy

y E(1 )σ −ν
y E(1 )σ +ν

( )T 1 1 2 2 3 3 V av av
1 3E σ ε σ ε σ ε and E σ ε
2 2

= + + =

      This is the equation of an ellipse and the yield surface is shown in figure-
3.1.4.4.1 . 

 

 

 

 

 

 

 

 

 
3.1.4.4.1F- Yield surface corresponding to Maximum strain energy theory. 
 

It has been shown earlier that only distortion energy can cause yielding but in 

the above expression at sufficiently high hydrostatic pressure σ1 = σ2 = σ3 = σ 

(say), yielding may also occur.  

From the above we may write ( ) y
2 23 2σ − ν = σ   and if ν ~ 0.3, at stress level 

lower than yield stress, yielding would occur. This is in contrast to the 

experimental as well as analytical conclusion and the theory is not 

appropriate. 

 
3.1.4.5 Distortion energy theory( von Mises yield criterion) 
 

According to this theory yielding would occur when total distortion energy 

absorbed per unit volume due to applied loads exceeds the distortion energy 

absorbed per unit volume at the tensile yield point. Total strain energy ET and 

strain energy for volume change EV can be given as  

 

 

Substituting strains in terms of stresses the distortion energy can be given as  
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( ) ( ) ( )2 2 2 2
1 2 2 3 3 1 yσ σ σ σ σ σ 2σ− + − + − =

σ2

σ1

-σy

-σy

σy

σy

yσ

0.577 σy

45o

Ed = ET- EV = ( )2 2 2
1 2 3 1 2 2 3 3 1

2(1 ν) σ σ σ σ σ σ σ σ σ
6E
+

+ + − − −  

At the tensile yield point, σ1 = σy , σ2 = σ3 = 0 which gives  

    2
dy y

2(1 ν)E σ
6E
+

=  

The failure criterion is thus obtained by equating  Ed and Edy , which gives 

 

 

In a 2-D situation if σ3 = 0, the criterion reduces to 
2 2 2

1 2 1 2 yσ σ σ σ σ+ − =  

                            i.e.   
y y y y

2 2

1 2 1 2 1
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞σ σ σ σ

+ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟σ σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

This is an equation of ellipse and the yield surface is shown in figure-3.1.4.5.1 . 

This theory agrees very well with experimental results and is widely used for 

ductile materials. 

 
 

 

  

 

 

 

 

 

 

 

3.1.4.5.1F- Yield surface corresponding to von Mises yield criterion. 
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3.1.5 Superposition of yield surface  
A comparison among the different failure theories can be made by superposing 

the yield surfaces as shown in figure- 3.1.5.1.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.5.1F- Comparison of different failure theories. 
 
It is clear that an immediate assessment of failure probability can be made just 

by plotting any experimental in the combined yield surface. Failure of ductile 

materials is most accurately governed by the distortion energy theory where as 

the maximum principal strain theory is used for brittle materials. 

 

3.1.6  Problems with Answers 
 

Q.1: A shaft is loaded by a torque of 5 KN-m. The material has a yield point of 

350 MPa. Find the required diameter using  

(a) Maximum shear stress theory 

(b) Maximum distortion energy theory 

Take a factor of safety of 2.5. 

 

Maximum distortion energy theory

Maximum principal stress theory

σ2

-σy

σy

σy
σ1

-σy

Maximum shear stress theory

Maximum principal strain theory
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( ) ( ) ( ) ( )22 2 2
1 2 2 3 1 3 Yσ σ σ σ σ σ 2 σ F.S− + − + − =

A.1:  

 Torsional shear stress induced in the shaft due to 5 KN-m torque is 

  x x
d

3

3
16 (5 10 )

τ =
π

  where d is the shaft diameter in m. 

(b) Maximum shear stress theory, 

x y
2

2
max 2

σ − σ⎛ ⎞
τ = ± + τ⎜ ⎟

⎝ ⎠
 

      Since σx = σy = 0,  τmax=25.46x103/d3 = Y x
xF S x

6350 10
2 . . 2 2.5
σ

=  

      This gives d=71.3 mm. 

 

(b) Maximum distortion energy theory 

In this case  σ1 = 25.46x103/d3 

    σ2 = -25.46x103/d3 

According to this theory, 

 

 

      Since σ3 = 0, substituting values of σ1 , σ2  and  σY  

  D=68 mm. 

 

Q.2: The state of stress at a point for a material is shown in the figure-3.1.6.1. 

Find  the factor of safety using  (a) Maximum shear stress theory (b) Maximum   

distortion energy theory. Take the tensile yield strength of the material as  400 

MPa.  

 

 

 
 
 

3.1.6.1F 

τ=20 MPa

σx=40 MPa

σy=125 MPa
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( ) ( ) ( ) ( )22 2 2
1 2 2 3 1 3 Yσ σ σ σ σ σ 2 σ F.S− + − + − =

A.2: 
 From the Mohr’s circle, shown in figure-3.1.6.2  

  σ1 = 42.38 MPa 

  σ2 = -127.38 MPa 

 (a)   Maximum shear stress theory 

  Y

xF S
1 2

2 2 .
σ − σ σ

=  

         This gives F.S = 2.356. 

(b)  Maximum distortion energy theory 

 

 

If  σ3 = 0 this gives F.S = 2.613. 

 

 

 

 

 

 

 

           
 
 
 
 
 
 
 
 

3.1.6.2F 
 
 

σ1σ2 σ
σx=20 MPa σy=120 MPa

τ=-20 MPa

τ

80 MPa
44.72 MPa

σ1σ2 σ
σx=20 MPa σy=120 MPa

τ=-20 MPa

τ

80 MPa
44.72 MPa
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Q.3: A cantilever rod is loaded as shown in the figure- 3.1.6.3. If the tensile 

yield   strength of the material is 300 MPa determine the rod diameter 

using (a) Maximum principal stress theory (b) Maximum shear stress 

theory  (c) Maximum distortion energy theory. 

 

 

 

 

 

 

 

 

 

 

 

3.1.6.3F 
 

A.3: 
      At the outset it is necessary to identify the mostly stressed element. Torsional  

      shear stress as well as axial normal stress is the same throughout the length 

of the rod but the bearing stress is largest at the welded end. Now among 

the four corner elements on the rod, the element A is mostly loaded as 

shown in figure-3.1.6.4 

  

 

  

 

 

3.1.6.4F 

120 mm
x

P=10 KN

BA

C

F=2KN

T =800 Nm

D

A

T
d3

16
π

(Torsional shear stress)

dP
2

4
π⎛ ⎞

⎜ ⎟
⎝ ⎠

(Axial stress)

FL
d3

32
π

(Bending stress)
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 Shear stress due to bending VQ
It

 is also developed but this is neglected 

due to its small value compared to the other stresses. Substituting values 

of T, P, F and L, the elemental stresses may be shown as in figure-
3.1.6.5: 

 

 

 

 

 

  

 

3.1.6.5F 
 This gives the principal stress as  

 
d d d d d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ = + ± + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2

1,2 2 3 2 3 3
1 12732 2445 1 12732 2445 4074
2 4

 

(a) Maximum principal stress theory, 

Setting σ1 = σY  we get d = 26.67 mm. 

(b) Maximum shear stress theory, 

Setting  Y1 2

2 2
σ − σ σ

= , we get d = 30.63 mm. 

(c) Maximum distortion energy theory, 

Setting  ( ) ( ) ( ) ( )22 2 2
1 2 2 3 1 3 Yσ σ σ σ σ σ 2 σ− + − + − =  

       We get d = 29.36 mm. 

 

 

 

 

 

 

d d2 3
12732 2445⎛ ⎞+⎜ ⎟
⎝ ⎠

d
⎛ ⎞
⎜ ⎟
⎝ ⎠3

4074
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3.1.7 Summary of this Lesson 
Different types of loading and criterion for design of machine parts 

subjected to static loading based on different failure theories have been 

demonstrated. Development of yield surface and optimization of design 

criterion for ductile and brittle materials were illustrated.   
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